

CO₂ mineralisation of steel slags for sustainable concrete

An environmental analysis of different available options

Andrea Di Maria

Highlights

- \rightarrow Sustainable concrete made through CO_2 mineralization is potentially carbon negative, and presents an environmental and economic opportunities
- \rightarrow Use of Energy and CO₂ recovery technology are key parameters to improve environmental performance.
- \rightarrow New policy is strongly needed to strive for opportunities and overcome barriers

Why Sustainable Concrete

Shangai, 1987

Shangai, 2013

Role of cement in sustainable

Reduce/eliminate the cement in concrete

- Powder texture
- > Cementitious properties

How do we activate the SSS?

➤ Carbonation

Carbonated blocks

Carbstone: industrial pilot

CARBSTONE INNOVATION

> Carbonation

 pressure and temperature required

No binder

Carbstone production process

1. Cryogenic separation

2. Membrane separation

3. Chemical absorption (MEA)

Analysed system

LCA- Environmental impact

More than just Carbon emissions

Calculation methodology

Substances Raw Materials Land use CO_2 VOC Ρ SO_2 NO_x CFC

Envir Calegones	Unit
Acidification	Mole of H+ eq
Global Warming	kg CO2 eq
Global Warming _{bio}	kg CO2 eq
Ecotoxicity Freshwater	CTUe
Eutroph Freshwater	kg P eq
Eutroph Marine	kg N eq
Eutroph Terrestrial	Mole of N eq.
Human toxicity	CTUh
Ionising Radiation	kBq U235 eq
Land Use	Kg C deficit eq
Ozone Depletion	Kg CFC-11 eq
Particulate Matter	PM2.5 eq
Resource Depletion	Kg SB eq
Water Depletion	m ³ eq

Calculation: an example

Goal of the study

Environmental footprint comparison

FU: 1 m² of material, providing a compressive strength of 40 MPa

9/16 better than PC

7/16 worse than PC

Conclusions

- → Potential of Carbstone to reduce the CO₂ –eq emissions (carbon negative?)
- \rightarrow Among the CO_2 recovery, cryogenic has the highest impacts in most of environmental categories
- \rightarrow Some limitation:
 - \rightarrow Energy consumption in the carbonation process
 - \rightarrow Source and recovery of CO₂
 - \rightarrow Scale of the pilot

Policy implications

Opportunities

CO₂ valorization network

Constrained technology

Barriers

Green public procurement

V5

Regional CO₂ accounting

Economic potential

Perception as waste

Want to know more?

International Journal of Greenhouse Gas Control 93 (2020) 102882

Environmental assessment of CO_2 mineralisation for sustainable construction materials

Andrea Di Maria^{a,*}, Ruben Snellings^b, Luc Alaerts^a, Mieke Quaghebeur^b, Karel Van Acker^{a,c}

^a Sustainability Assessment of Material Life Cycle, Katholieke Universiteit Leuven (KUL), Kasteelpark Arenberg 44 box 2450, BE-3001 Leuven, Belgium ^b Sustainable Materials Unit, Vlaamse Intselling voor Technologisch Onderzoek (VITO), Boertang 200, 2400 Mol, Belgium ^c Center for Economics and Corporate Sustainability (CEDON), KU Leuven, Warmoesberg 26, BE-1000 Brussels, Belgium

Thank you !

andrea.dimaria@kuleuven.be

STEUNPUNT CIRCULAIRE ECONOMIE

